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SUMMARY 

The experimental r e s u l t s  of t h e  program are presented. The ob jec t  of 
t h i s  program w a s  t o  provide technology f o r  f an  d r i v e  turb ines  u t i l i z i n g  very 
high s t age  loading. A four-stage turb ine  w a s  t e s t e d  with and without o u t l e t  
turning vanes. 

The four and one-half s t age  turb ine  achieved a to t a l - to - to t a l  e f f ic iency  
of 0.853 a t  the  design equivalent speed (N/&& = 2171.2 rev/min) and design 
to ta l - to- to ta l  plressure r a t i o  ( P T ~ / P ~ ~  2.66). 

t o  a x i a l  a t  a l l  of the operating conditions inves t iga ted .  The test r e s u l t s  
i nd ica t e  that approximately 0.5 percent l o s s  i n  o v e r a l l  4-112-stage turb ine  
e f f i c i ency  a t  100% speed and design work is a t t r i b u t e d  t o  t h e  o u t l e t  turning 
vane performance when based on measured tu rb ine  exhaust t o t a l  pressures.  
However, a d i f fe rence  of only 0.08 percent l o s s  i n  performance w a s  indicated 
when based on ca lcu la ted  exhaust t o t a l  pressure. 

The o u t l e t  turning vanes were successfu l  i n  tu rn ing  the turb ine  e x i t  flow 

The 4-1/2-stage turb ine  r a d i a l  e f f i c i ency  p r o f i l e  showed high e f f i c i ency  
In  the p i t c h l i n e  region with a s l i g h t  decrease toward t h e  t i p  and a heavy loss 
i n  t h e  hub region. 

Reynolds number t e s t ing ,  accomplished by varying t h e  i n l e t  p ressure  (density 
l e v e l ) ,  indicated decreases i n  e f f i c i ency  and equivalent weight flow with 
decreasing Reynolds number. 
sustained the g r e a t e s t  increase i n  l o s s  with decreasing Reynolds number. 

Radial e f f i c i ency  p r o f i l e s  ind ica ted  t h e  hub region 



INTRODUCTION 

A twenty-one month a n a l y t i c a l  and experimental inves t iga t ion  program w a s  
conducted t o  provide technology f o r  f an  d r ive  turb ines  u t i l i z i n g  very high 
s tage  loading. 
ura t ions  f o r  advanced high bypass r a t i o ,  d i r e c t  l i f t  turbofan propulsion 
system appl icat ions.  

The technology is  s p e c i f i c a l l y  appl icable  t o  multi-stage config- 

The expanding r o l e  of t he  turbofan engine stems from i ts  inherent  design 
f l e x i b i l i t y  t o  e x p l o i t  t he  cyc le  advantage afforded through a small gas gen- 
e r a t o r  core  i n  conjunction with a f an  se lec ted  t o  provide improved f u e l  con- 
sumption and t h r u s t  cha rac t e r i s t i c s .  Advanced research inves t iga t ions  of t h e  
propulsion requirements for d i r e c t  l i f t  f an  engine systems ind ica t e  these  
systems w i l l  have high bypass r a t i o  turbofan engines. 

The s i z e  of a l i f t  engine i s  as important as i ts  weight. A V/STOL air- 
plane w i l l  r equi re  twelve t o  fourteen of these  engines t o  be mounted, involving 
considerable pod area and weight. I f  twelve o r  more l i f t  engines are i n s t a l l e d  
p e r  a i rp lane ,  i t  i s  apparent t h a t  engine cos t  w i l l  be a s i g n i f i c a n t  f a c t o r  i n  
t h e  t o t a l  a i rp l ane  cost .  Since number of p a r t s  and components has an  e f f e c t  
on cos t ,  t he re  is a n  incent ive  t o  reduce t h e  number of s t ages  i n  a f a n  d r ive  
turbine.  

The foregoing considerat ions of V/STOL engine requirements suggest t he  
following f an  d r ive  turb ine  requirements: 

1. Minimum number of s tages  (short ,  less cos t )  

2. Some SFC penalty acceptable  (relative t o  c r u i s e  engine) 

Combined with the  low ro to r  speed (non-geared), these requirements imply 
a f an  d r ive  turb ine  with meanline average loading (gJAh/ZCU 2, i n  the 2-2.5 
range and e f f i c i e n c i e s  i n  the  80% t o  85% range f o r  l i f t  engine operat ion.  A 
fan dr ive  turb ine  design of t h i s  type can save two t o  th ree  s tages  with min- 
imum impact on l i f t  engine f u e l  consumption, while  having a bene f i c i a l  e f f e c t  
on i n s t a l l a t i o n  weight, drag, and cost .  

P 

The s p e c i f i c  ob jec t ive  of t h i s  program w a s  t o  design, bui ld ,  and test a 
very highly loaded four-stage f a n  d r ive  tu rb ine  with o u t l e t  turning vanes. 

The program w a s  divided i n t o  two phases encompasssing e igh t  t a sk  items of 
The purpose of Task I a c t i v i t y ,  

w a s  t o  i nves t iga t e  parametric tu rb ine  ve loc i ty  diagram s tud ie s .  Task I1 
involved se l ec t ing  one turb ine  design f o r  which de ta i l ed  aerodynamic, mechan- 
ical ,  and r i g  modification sub-tasks w e r e  performed. 
and I1 w e r e  reported i n  Reference 1. 

The f i r s t  phase covered Task Items I and 11. 

The r e s u l t s  of Tasks I 

The second phase covered the  remaining tasks  of t h i s  program including 
the  following: (a) f ab r i ca t ion  and procurement of tu rb ine  blading, casing 
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pieces ,  and running gear ,  (b) v ib ra t ion  bench t e s t i n g  and f a t igue  endurance 
t e s t ing  of ro to r  blades,  (c) modification of turbine r i g ,  (d) instrumentation 
of turbine test sec t ion ,  (e) performance test of turbine,  and ( f )  ana lys i s  of 
performance tests and wr i t ing  of performance report .  
repor t  is t o  present  t h e  r e s u l t s  of t h e  task items completed i n  Phase Two of 
t h i s  program. 

The purpose of t h i s  

3 



AERODYNAMIC EVALUATION 

TURBINE 

Requirements - The ana lys i s  and design of t h e  4-1/2-stage f a n  d r i v e  tur- 
The turb ine  design bine which w a s  invest igated are presented i n  Reference 1. 

requirements are presented below: 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

Constant p i t c h  diameter 

Number of s tages  

Equivalent weight flow 

I n l e t  s w i r l  angle  

E x i t  s w i r l  angle w i t h  turning 
vanes 

Velocity leaving o u t l e t  turning 
vanes r e l a t e d  t o  i n l e t  cr i t ical  
ve loc i ty  

D-Factor of o u t l e t  turning 
vanes a t  mean radius  

Average mean radius  loading 
(gJAh/ 2CUp2) 

Equivalent s p e c i f i c  work 

w$/P* a t  i n l e t  

N/$ 

Equivalent mean blade speed 
(constant f o r  a l l  s rages) 

19.00 in. (48.26 cm.) 

4-1/ 2 

25.07 lbm/sec (11.37 kg/sec.) 

0.0 degrees 

0.0 degrees 

0.376 

0.4 

2.5 

25.88 BTU/lbm (60242.32 joules/kg 

2 3 8.85 lbm- fi/ ( sec- l b  f / i n  
(25.55 kg- fi/ [ sec-n/ cm2 ] ) 

95.33 

180 f t / s e c  (54.86 m/sec) 

Configurations Tested - A 4-1/2-stage turbine with constant p i tkh l ine  
diameter w a s  t e s t e d  i n  an  a i r  turbine f a c i l i t y  t o  obta in  d e t a i l e d  design and 
off design aerodynamic performance data  of t h e  Very Highly Loaded Turbine 
reported i n  Reference 1. 
(Ahstage/Ahturbine) w a s  28.5% on s tage  one, 26.5% on s tage  two, 26.0% on s tage  
three,  and 19% on s tage  four .  
(gJAh/2CUp2) f o r  each s tage  w e r e  2.85, 2.65, 2.60, and 1.9 f o r  s tages  one, 
two, three,  and four  respect ively.  The turb ine  design ve loc i ty  diagram is  
presented i n  Figure 1 and the flowpath is shown i n  Figure 2. 

The design percent t o t a l  energy produced by each s t a g e  

The corresponding aerodynamic p i t ch l ine  loadings 
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The turb ine  was a l s o  t e s t ed  as a four  s t age  configurat ion i n  order  t o  assess 
the  design and off design performance of the  Outlet  Turning Vanes. 

Photographs of t h e  turb ine  blading used i n  the test program are presented 
i n  Figures 3 through 16. 

TEST APPARATUS AND INSTRUMENTATION 

Test F a c i l i t y  - The two turb ine  configurations were t e s t ed  i n  the General 
Electric Company's Evendale A i r  Turbine Test Fac i l i t y ,  which is  a dual  purpose - -  

f a c i l i t y  capable of evaluating e i t h e r  s i n g l e  s t age  high pressure  turb ine  o r  
multistage f an  dr ive  turb ine  performance. 
f a c i l i t y  configuration. 

Figure 17 shows a t y p i c a l  test 

Turbine air is supplied from che Central  A i r  Supply System of t h e  Com- 
ponent Test Complex, which cons i s t s  of an arrangement of f i v e  mul t i s tage  
cent r i fuga l  compressors dr iven by synchronous motors through speed increasing 
gears.  Staging these compressors i n  series o r  p a r a l l e l  o r  using them as 
exhaustors provides the  var ious modes of operation normally required f o r  t he  
turbine operation. The compressor discharge air is then d i rec ted  through 
various aux i l i a ry  systems i n  order t o  provide a i r  that i s  f i l t e r e d  t o  t en  
micron p a r t i c l e  size, dr ied  t o  minus 70' F dewpoint, and i n d i r e c t l y  heated t o  
the  desired temperature by passing i t  through a hea t  exchanger. Flow enters 
the  test sec t ion  through a spec ia l ly  shaped s c r o l l  which smoothes out  flow 
disturbances and provides a uniform stream t o  the  turb ine  i n l e t .  Air en te r s  
the  f i r s t  stage nozzle through a convergent bellmouth sec t ion  and a constant 
annular passage approximately three  inches long. 
through a constant annular passage approximately nine inches long and expands 
in to  the  exhaust plenum. 

Turbine discharge air  leaves 

The generated turb ine  horsepower is extracted by means of a low speed 
waterbrake, s p e c i f i c a l l y  designed f o r  t h i s  test series, which w a s  d i r e c t l y  
coupled t o  the  turb ine  s h a f t  by f l e x i b l e  couplings and a shor t  spool p iece .  
This waterbrake design provides exce l len t  speed s t a b i l i t y  throughout the  e n t i r e  
turbine operating map. 

A two-level t r i p  system i s  used t o  guard aga ins t  overspeed and excessive 
temperature o r  v ibra t ions .  
bearing over-temperature. 
c r i t i c a l  support system temperatures o r  pressures ,  

The l e v e l  1 t r i p  i s  s ignaled by an overspeed o r  
Level 2 i s  s ignaled by excessive v ibra t ions  o r  

The turbine f a c i l i t y  con t ro l  console is  located i n  t h e  Test C e l l  Control 
A l l  t he  necessary cont ro ls  and c r i t i ca l  tur -  

This f e a t u r e  is  a d i r e c t  r e s u l t  

Turbine parameters of in le t  temper- 

Room, i l l u s t r a t e d  i n  Figure 18. 
bine or  f a c i l i t y  monitoring instrumentation are s t r a t e g i c a l l y  located t o  enable 
one man cont ro l  of the entire test f a c i l i t y .  
of the u t i l i z a t i o n  of analog closed-loop cont ro l  c i r c u i t s  f o r  s e t t i n g  and 
maintaining a l l  prime turb ine  var iab les .  
a tu re ,  i n l e t  pressure,  speed, discharge pressure,  and ro to r  t h r u s t  bearing load 
can a l l  be maintained automatically a t  pre-set  values. 
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Data Acquisition System - The da ta  acqu i s i t i on  system cons i s t s  of a dig- 
i t a l  recorder l inked to  a paper t ape  and paper punch tape p r i n t e r .  
of 61 temperatures and 236 pressures,  as w e l l  as o ther  s p e c i f i c  tu rb ine  per- 
formance parameters, w e r e  recorded by t h e  d i g i t a l  recording system. 

A t o t a l  

Temperature measurements were obtained with p rec i s ion  manufactured 
Chromel-Alumel thermocouple w i r e .  
use w i r e  from one spool. 
l ead  and both samples and sensor leads were oven cured f o r  28 hours a t  approx- 
imately 400' F. 
pera ture  range aga ins t  a Platinum Resistance Thermocouple which is  t r aceab le  
to  t h e  National Bureau of Standards, r e s u l t i n g  i n  co r rec t ion  curves which w e r e  
applied t o  the  temperature measurements i n  t h e  da ta  reduction program. 

Sensors i n  any one plane of measurements 
Cal ibra t ion  samples of w i r e  w e r e  c u t  from each sensor 

The w i r e  samples w e r e  then ca l ib ra t ed  over t h e  expected t e m -  

Cal ibra t ion  curves were a l s o  es tab l i shed  t o  determine temperature recovery 
a t  various expected Mach number ranges and flow incidence angles using a 
spec ia l ly  designed c a l i b r a t i o n  stand with a 2.5 inch  f r e e  j e t  nozzle capable 
of a Mach number range from 0.2 t o  1.0. 
reduction program using t h e  c a l i b r a t i o n  curves. 

Corrections were made i n  t h e  da ta  

The thermocouple leads terminate i n  a Copper Alloy Thermal Sink (CATS), 
which is  thermally insu la ted  t o  minimize temperature grad ien ts .  To arrive a t  
the  absolute value of any temperature sensor, t h e  absolu te  temperature of t he  
CATS block w a s  measured, using both a water-ice ba th  re ference  and an electron- 
i c a l l y  cont ro l led  Ice Point Reference System. The latter w a s  used t o  determine 
absolu te  temperature l eve l s ,  bu t  both systems w e r e  cont inua l ly  compared. The 
e l e c t r i c a l  output of each thermocouple w a s  measured at t h i s  CATS block and the  
s igna l  w a s  amplified and d i r ec t ed  t o  t h e  d i g i t a l  recorder.  

Turbine r i g  pressure measurements w e r e  obtained by t h e  use of prec is ion  
s t r a i n  gage pressure transducers which convert pneumatic s i g n a l s  t o  e l e c t r i c a l  
outputs. 
e l e c t r i c a l l y  cont ro l led  scanners which sys temat ica l ly  d i r e c t  each pressure 
s igna l  t o  a transducer. 
d i rec ted  t o  the  d i g i t a l  recorder. 
exc i t a t ion  and output amplification. 
voltage sensed a t  t h e  transducer, t h e  transducer zero, and a known c a l i b r a t i o n  
s igna l  which w a s  recorded through a l l  i t s  assoc ia ted  electrical c i r c u i t r y .  
r e p e a t a b i l i t y  of these parameters w a s  cont inua l ly  monitored t o  preclude any 
measurement e r ro r s .  

The pressures en te r  t h e  con t ro l  room pneumatically and terminate i n  

The transducer electrical outputs were amplified and 
A l l  t ransducers of t h i s  type have a common 

Each da ta  reading contains t h e  e x c i t a t i o n  

The 

Pressure ca l ib ra t ions  were performed p r i o r  t o  each test run using a 
prec is ion  dead weight tester f o r  above-atmospheric ca l ib ra t ions ,  and a quar tz  
manometer f o r  sub-atmospheric ca l ib ra t ions .  Both u n i t s  w e r e  f requent ly  cali- 
brated and t h e i r  p rec is ions  are d i r e c t l y  t raceable  t o  t h e  National Bureau of 
Standards. A l l  pressure transducers used have characteristic curves compiled 
i n  a computer l i b r a r y  f i l e ,  t o  which each pre-run c a l i b r a t i o n  w a s  compared f o r  
discrepancies. 
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The d i g i t a l  recording system is  linked t o  the  General 
by means of a GE Terminet 300 located i n  the  Control Room. 
enabled reduced da ta  t o  be pr in ted  out  i n  the  Control Room 
of the  reading of a test  point.  

Instrumentation - Figure 1 9  shows the  loca t ion  of t he  
i n  the  t e s t i n g  of t h e  two turb ine  configurations.  

Electric 635 Computer 

within f i v e  minutes 
This f ea tu re  

instrumentation used 

Temperature and pressure instrumentation was mounted on the  leading edge of 
the  i n l e t  s t r u t  frame, s t a t i o n  0, Figure 19,  on each of ten  s t r u t s  which were 
spaced 36 degrees apar t ,  and located approximately 1 2  inches upstream of the  
f irst  s t age  s t a to r .  Temperature w a s  measured with 25 Chromel-Alumel thermo- 
couples mounted i n  high recovery s tagnat ion tubes a f f ixed  t o  f i v e  of t he  s t r u t s  
72 degrees apar t .  
located r a d i a l l y  a t  the  area center of f i v e  equal annular areas. Total  pressure 
was measured by 25 Riel-type probes located on f i v e  a l t e r n a t e  s t r u t s ,  a l so  72 
degrees a p a r t ,  and located i n  an i d e n t i c a l  manner as the  thermocouples. 
pressures  were measured independently by means of the  scanner-transducer 
system and then ar i thmet ica l ly  averaged i n  the  da ta  reduction program. 
were a l so  pneumatically averaged, using a spec ia l ly  designed averaging block, 
measuring am average output on a s i n g l e  pressure transducer.  
a t  t h i s  s t a t i o n  were used f o r  turbine i n l e t  temperature. 

The thermocouples w e r e  grouped f i v e  to  a s t r u t  and were 

These 

They 

The temperatures 

I n l e t  s t a t i c  pressure  was measured with f i v e  equal ly  spaced s ta t ic  pres- 
sure raps located om both the  inner and outer casings i n  a s t r a i g h t  annular 
sec t ion  about 2-1/2 chord lengths  upstream of the  f i r s t  s tage  s t a t o r ,  S t a t ion  
1.0, Figure 19, 
uniformity of the  flow and t o  ca l cu la t e  t he  turbine i n l e t  t o t a l  pressure.  
Kiel-type t o t a l  pressure probes were a l s o  i n s t a l l e d  i n  the  i n l e t  plane and 
spaced 72 degrees apa r t  t o  serve as a check of the  circumferent ia l  uniformity 
of the  flow. 

These s ta t ic  pressure taps were used t o  check t h e  circumferent ia l  
Five 

In t e r s t age  s ta t ic  pressures  were measured with four  s ta t ic  pressure t a p s  
i n s t a l l e d  90 degrees apart a t  the  leading and t r a i l i n g  edge planes of the  
s t a t o r  blade rows on both the  inner and outer  bands, S t a t ion  1 .2  through 1.8. 
The circumferent ia l  l oca t ion  of t h e  pressure t a p s  was se lec ted  t o  coincide with 
the  pos i t ion  of t he  glean streamline.  
t a p s  was used a t  the  leading edge plane of the  o u t l e t  turning vanes, S t a t ion  
1 .9  and 1.95. 

A similar arrangement of s ta t ic  pressure 

Four turb ine  o u t l e t  s t a t i c  pressures  were measured on both the  inner  and 
outer casings a t  S ta t ion  2 and approximately one inch downstream of t he  o u t l e t  
turning vanes. These s t a t i c  pressure taps  were spaced 90 degrees apa r t .  
o u t l e t  t o t a l  temperature, t o t a l  pressure,  and flow angle  were a l s o  measured a t  
S ta t ion  2 over an angle  subtending about 11 degrees by a r a d i a l l y  and circum- 
f e r e n t i a l l y  t ravers ing combination probe. 
servo-system al igned the  probe with the  flow and provided an electrical output 
proport ional  t o  the  flow angle. Total  temperature, t o t a l  pressure,  and flow 
angle w e r e  recorded on X-Y cha r t  recorders as funct ions of e i t h e r  r a d i a l  immer- 
s ion  or  c i rcumferent ia l  posi t ion.  The instrumentation a t  S ta t ion  2 w a s  used 
t o  ca l cu la t e  o u t l e t  t o t a l  pressure as described i n  Appendix A. 

Turbine 

A f a s t  response pressure  d i f f e r e n t i a l  
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A t  S t a t ion  3 ,  approximately four  inches downstream of the  o u t l e t  turning 
vanes, turbine o u t l e t  t o t a l  temperature and t o t a l  pressure were measured with 
s i x  f ixed  c i rcumferent ia l  arc rakes 60 degrees apa r t ,  locaked ra 
centers  of s i x  equal  annular areas. A t o t a l  of 36 t o t a l  tempera 
t o t a l  pressures  w e r e  measured. Each rake contained twelve el-type pressure 
elements located side-by-side and s ix  shielded thermocoupl robes side-by- 
s ide .  
i n  t he  same manner as the  inlet pressure measurements. 
were a l s o  i n s t a l l e d  on t h e  inner  and ou te r  w a l l s  a t  t h i s  s t a t i o n  and were 
located 60 degrees apa r t .  

The t o t a l  pressures  were averaged both a r i thmet ica l ly  and pneumatically 
S ix  s ta t ic  pressure taps  

Four turb ine  o u t l e t  s ta t ic  pressures  w e r e  measured on both t h e  inner  and 
outer  casings immediately a f t  of the  o u t l e t  turning vanes and approximately 
one inch downstream of t h e  o u t l e t  turning vanes. These s ta t ic  pressure t aps  
w e r e  spaced 90 degrees apar t .  S i x  s ta t ic  pressure  t aps  w e r e  a l s o  i n s t a l l e d  
on the  inner  and outer  w a l l s  about four  inches downstream of t h e  turning vanes 
and w e r e  loca ted  60 degrees apar t .  

A i r  flow t o  t h e  turb ine  w a s  measured using a ca l ibra ted  c i r c u l a r  arc 
ventur i  which w a s  operated a t  c r i t i ca l  flow conditions.  The ven tu r i  i n l e t  
pressure and temperature w e r e  measured using w a l l  s tat ic pressure taps  and 
Chromel-Alumel a i r  thermocouple probes, respect ively,  located upstream of t h e  
ventur i  th roa t .  

Three independent speed measurements were provided by an  ind ica t ing  system 
cons is t ing  of a 60-tooth gear a t tached t o  t h e  turb ine  sha f t ing  and th ree  sta- 
t ionary magnetic sensors  located very c lose  t o  t h e  gear tee th .  
impulses r e s u l t i n g  from t h e  passing of each too th  provided an electriczl  f re -  
quency proport ional  t o  turb ine  speed. E l e c t r i c a l l y  t i m e  i n t eg ra t ing  t h i s  
s igna l  provided t h e  speed ind ica t ion ,  accurate  wi th in  Ifi 1 rpm. 
course of each da ta  reading, twelve d i f f e r e n t  samples of speed w e r e  recorded 
and ar i thmet ica l ly  averaged. 

Electrical 

During the  

Two independent techniques w e r e  employed f o r  t he  measurement of sha f t  
torque. 
sensor. 
s h a f t  and the  waterbrake s h a f t  with a spec ia l ly  designed s l i p  r i n g  mounted 
behind the  waterbrake t o  t ransmit  electrical s igna l s  t o  t h e  d i g i t a l  recorder.  
Each bridge w a s  exc i ted  with i t s  own independent e l ec t ron ic s  system and read 
out  o r  displayed through t h e  d i g i t a l  da ta  acqu i s i t i on  system. The secondary 
torque measurement w a s  obtained by means of a load cell  loca ted  beneath a 
l eve r  a r m  a t tached t o  the  cradled waterbrake s t a t o r  housing. 
a l so  employed independent s i g n a l  conditioning and readout e l ec t ron ic s .  

The primary system consis ted of a dua l  bridged shaft-mounted torque 
The s t r a i n  s e n s i t i v e  spool  s ec t ion  w a s  located between t h e  turb ine  

The load cell  

Torque ca l ib ra t ions  w e r e  performed i n  p lace  using a prec is ion  torque a r m  
and dead weights, whose weight values  are t raceable  t o  t h e  National Bureau of 
Standards. Dead weight ca l ib ra t ions  w e r e  conducted p r i o r  t o  each test run t o  
ve r i fy  r epea tab i l i t y  of torque zeros and br idge  l i n e a r i t y .  I n  addi t ion ,  exten- 
s i v e  temperature ca l ib ra t ions  w e r e  made t o  def ine  torque zero and modulus 
changes over t h e  opera t iona l  temperature range, even though these  e f f e c t s  are 
less than 0.25 percent. 
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TEST PROCEDURE 

The turb ine  i n l e t  condi t ions were set a t  720' R and 45 ps i a ,  with the  
exception of t he  test poin ts  noted i n  t h e  table below. 
could not be set a t  t h e  above condi t ions due t o  test f a c i l i t y  and waterbrake 
l imi ta t ions .  

These test poin ts  

P /P Percent Design P , p s i a  T T s ' R  
T1 s3 Speed T1 0 

2.28 60 45 700 

1.97 80 38 705 

1.97 90 38 7 10 

1.97 100,110,120 38 717 

1.78 60,80,90,100,110,120 38 693 

The performance mapping of t h e  turb ine  was accomplished by se l ec t ing  
tes t  poin ts  within t h e  following range of var iables:  

0 Speed - 60, 80, 90, 100, 110, 120 percent  design speeds 

0 Total- to- total  pressure r a t i o  - from a maximum corresponding t o  125% 
design work a t  design speed t o  a minimum equal t o  t h e  pressure  r a t i o  
t h a t  produces 60% design work a t  design speed. 

Additional t e s t i n g  was done i n  t h e  v i c i n i t y  of t h e  design po in t  a t  720° R 
and i n l e t  pressures  of 25, 38, and 50 p s i a  t o  inves t iga t e  e f f e c t s  of Reynolds 
number. 

The following performance da ta  were obtained a t  each test point :  

ai Turbine weight flow 

0 Rotative speed 

0 Torque 

0 I n l e t  t o t a l  temperature 

0 I n l e t  t o t a l  and s ta t ic  pressures  

0 Out le t  absolu te  flow angles  

m Outlet  t o t a l  and s ta t ic  pressures  
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e Outlet  t o t a l  temperatures 

0 

A t  each test point  t h ree  complete sets of da t a  w e r e  recorded and processed 

Flowpath hub and t i p  i n t e r s t a g e  s ta t ic  pressures.  

through t h e  on-line computer which permitted an immediate evaluat ion of t he  
reduced data. 

Key performance parameters w e r e  cont inual ly  monitored t o  insure  accuracy 
and consistency of t he  test data. 
throughout the  t e s t i n g  t o  monitor the  r epea tab i l i t y  of t h e  f a c i l i t y  and the  
design poin t  calculat ions.  

The design poin t  w a s  pe r iod ica l ly  reset 

One r a d i a l  and th ree  circumferent ia l  traverses w e r e  made a t  each test 
point  t o  record t h e  turb ine  exi t  t o t a l  pressure,  t o t a l  temperature, and 
absolute  flow angle. The circumferent ia l  traverses w e r e  taken a t  10, 50, and 
90 percent of t he  o u t l e t  turning vane height.  

A de ta i led  turb ine  e x i t  survey w a s  taken a t  t h e  design speed and design 
pressure r a t i o .  The survey included three  r a d i a l  traverses a t  0, 50, and 
100 percent of t h e  circumferent ia l  t r ave r se  sec to r  which w a s  an arc of 11.32 
degrees, and seven circumferent ia l  t raverses  a t  10, 20, 30, 50, 70, 80, and 
90 percent of t he  o u t l e t  turning vane height.  

DATA REDUCTION PROCEDURE 

Turbine Overall  Performance - Two ca lcu la t ion  schemes w e r e  used t o  reduce 
the  ove ra l l  performance data.  
The preliminary test cell  da ta  reduct ion program used measured exit  t o t a l  pres- 
sures  f o r  a l l  performance ca lcu la t ions  whereas the  f i n a l  data  reduction w a s  
performed using calculated i n l e t  and exit  t o t a l  pressures.  This exit t o t a l  
pressure w a s  calculated from cont inui ty  using o u t l e t  t o t a l  temperature, o u t l e t  
s ta t ic  pressure,  measured weight flow, and o u t l e t  flow angle. The o u t l e t  t o t a l  
temperature w a s  derived from the  i n l e t  t o t a l  temperature, s p e c i f i c  enthalpy 
drop obtained from the  torque, speed and weight flow measurements. The o u t l e t  
s tatic pressure w a s  calculated as the  average of t he  measured e x i t  hub and t i p  
static pressures .  
flow angle from t h e  t raverses .  A more de t a i l ed  descr ip t ion  of a l l  of the  cal-  
cu la t ion  procedures used i n  the  da t a  reduct ion may be  found i n  Appendix A. 

The two methods d i f f e red  i n  only one respect .  

The o u t l e t  flow angle w a s  taken as an in tegra ted  average 

The following o v e r a l l  performance parameters w e r e  determined for each of 
the three  readings taken a t  each test point: 

1. Calculated i n l e t  t o t a l  t o  o u t l e t  t o t a l  pressure r a t i o  as obtained 
from i n d i r e c t  measurement. 

2. Calculated i n l e t  t o t a l  t o  o u t l e t  s tatic pressure r a t i o  as obtained 
from i n d i r e c t  measurement. 

3. Equivalent speed. 

4 .  Equivalent weight flow. 
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5 .  Equivalent weight flow-speed parameter (product of equivalent speed 
and equivalent weight flow). 

6 .  Equivalent torque. 

7. Equivalent s p e c i f i c  work. 

8. Idea l  equivalent s p e c i f i c  work. 

9. 

10. 

Efficiency based on ca lcu la ted  to ta l - to- to ta l  p ressure  r a t i o .  

Blade-jet speed r a t i o  based on to t a l - to - s t a t i c  pressure  r a t i o .  

These parameters are tabulated in Table I. 

Outlet Turning Vane Ex i t  Survey Calculations - The t o t a l  pressure,  t o t a l  
temperature, and absolu te  flow angle, which were recorded during t h e  turb ine  
ex i t  surveys a t  t h e  design point,  were used i n  t h e  cons t ruc t ion  of contour 
p l o t s  showing l o c a l  e f f ic iency .  The l o c a l  e f f i c i e n c i e s  were ca lcu la ted  from 
the  following parameters: 

0 Measured i n l e t  t o t a l  temperature 

0 Calculated i n l e t  t o t a l  p ressure  based on cont inui ty  using measured 
i n l e t  s tatic pressure  and measured a i r f low 

0 Local e x i t  t o t a l  temperature measured by t h e  t r ave r se  probe 

0 Local e x i t  t o t a l  pressure measured by t h e  traverse probe 

Reynolds Number Calculations - The turb ine  Reynolds number w a s  var ied  by 
operating the  turb ine  over a range of i n l e t  pressures (dens i t i e s )  while main- 
t a in ing  t h e  design pressure  r a t i o .  A Reynolds number f o r  each bladerow w a s  
calculated on t h e  b a s i s  of leaving gas ve loc i ty ,  t h r o a t  dimension and suc t ion  
surface length of t he  p a r t i c u l a r  blade as shown i n  t h e  following expression 
which is  derived i n  d e t a i l  i n  Appendix B. 

where: 

W = measured a i r f low (lbm/sec) 
R = suc t ion  su r face  length  (inches) 
p = bladerow exit v i s c o s i t y  (lbm/sec-ft) 
n = number of a i r f o i l s  
h = height of blade a t  t h r o a t  (inches) 

? = i t h  s t age  
d = blade t h r o a t  dimension (inches) 
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The turb ine  ove ra l l  Reynolds number w a s  obtained by energy weighting the  
individual  bladerow Reynolds numbers as follows: 

EXPERIMENTAL RESULTS AND DISCUSSION 

Turbine Overall Performance - The reduced da ta  and ca lcu la ted  parameters 
are presented i n  t h e  following curves: 

a. 

b. 

C. 

d. 

e. 

f .  

Equivalent torque versus  ca lcu la ted  to ta l - to- to ta l  pressure r a t i o .  

Equivalent weight flow versus ca lcu la ted  to ta l - to- to ta l  p ressure  
r a t i o .  

Equivalent s p e c i f i c  work versus ca lcu la ted  to ta l - to- to ta l  pressure 
r a t i o .  

Total-to-total  e f f i c i ency  versus blade-jet  speed r a t i o .  

Total-to-total  e f f i c i ency  versus ca lcu la ted  to ta l - to- to ta l  pressure 
r a t i o .  

Equivalent s p e c i f i c  work versus equivalent  weight flow speed 
parameter with l i n e s  of constant  ca lcu la ted  to ta l - to- to ta l  
pressure r a t i o ,  constant  speed, and constant  e f f i c i ency  superimposed. 

The above curves u t i l i z e  constant  values of percent equivalent  design speed 
as a parameter and are presented i n  Figures 20 through 25. 

Figures 26 through 29 show comparisons of t h e  reduced da ta  f o r  equivalent  
torque, equivalent  weight flow, equivalent  s p e c i f i c  work, and ef f ic iency ,  
respect ively,  t o  t he  pre- tes t  p red ic t ions  o r i g i n a l l y  presented i n  Reference 1. 
The da ta  show agreement with predicted t rends  but  no t  with the  predicted 
absolute  leve ls .  The disagreement i n  magnitude w a s  p r imar i ly  due t o  t h e  
se l ec t ion  of loss coe f f i c i en t s  (such as bladerow e f f i c i e n c i e s  and ro to r  
and s t a t o r  t o t a l  pressure recovery f ac to r s )  which are considered as constants  
i n  the  vector  diagram performance ca lcu la t ions .  

The lower predicted design poin t  equivalent  weight flow i s  considered 
t o  be a mismatch between t h e  s t age  one s t a t o r  physical  t h roa t  area and 
the  design in t en t .  

Normalized i n t e r s t a g e  hub and t i p  static pressures  versus a x i a l  s t a t i o n  
are presented i n  Figure 30 f o r  t h e  design speed a t  each turb ine  pressure 
r a t i o  tes ted.  These p l o t s  i nd ica t e  t h a t  as turb ine  to ta l - to- to ta l  pressure 
r a t i o  increases  the  f i r s t  s t age  hub r eac t ion  decreases from pos i t i ve  t o  
negative. This downward trend w a s  predicted but  t h e  absolute  value of t he  
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measured reac t ions  w a s  lower than t h e  l e v e l  predicted by the  Turbine Computer 
Program. 

Turbine E x i t  Survey - Figures 31 and 32 present  t h e  e f f i c i ency  contours 
of t he  4-1/2- and t h e  4-stage tu rb ine  configurations as a function of percent 
r a d i a l  height and c i rcumferent ia l  pos i t ion .  The l o c a l  e f f i c i e n c i e s  were 
determined from the r a d i a l  and c i rcumferent ia l  t o t a l  p ressure  and t o t a l  
temperature traverse surveys i n  t h e  tu rb ine  exit plane. The 4-1/2-stage 
e f f ic iency  contour p l o t  covers an arc of 2.1 o u t l e t  turning vane p i t ches  
and the 4-stage e f f i c i ency  contour p l o t  covers an  arc of 1.56 f o u r t h  s t age  
s t a t o r  pitches.  
i n  t he  hub and t i p  regions of t h e  flowpath. The 4-1/2-stage contours show 
the  pronounced o u t l e t  turning vane wakes e spec ia l ly  i n  t h e  v i c i n i t y  of t h e  
t i p .  
secondary flow f i e l d s  generated by t h e  high turning s t a t o r  and blade a i r f o i l s .  

These p l o t s  i l l u s t r a t e  t h e  l a r g e  r a d i a l  e f f i c i ency  gradien ts  

The low e f f i c i ency  regions a t  t h e  hub are considered t o  be  t h e  s t rong  

The reader i s  cautioned aga ins t  drawing conclusions about t h e  r e l a t i v e  
performance of t h e  two configurations from these  p l o t s  s i n c e  t h e i r  degree of 
accuracy is only s u f f i c i e n t  t o  make q u a l i t a t i v e  but  no t  q u a n t i t a t i v e  judgment. 

Figure 33 compares t h e  turb ine  r a d i a l  t o t a l  p ressure  r a t i o  d i s t r i b u t i o n s  
for  t he  two configurations.  
plot- s ince  t h e  two turb ines  were opera t ing  with s l i g h t l y  d i f f e r e n t  equivalent 
energy ex t rac t ions .  This accounts f o r  t h e  exit t o t a l  p ressure  f o r  t h e  4-1/2- 
s tage bui ld  being s l i g h t l y  g rea t e r  than that f o r  t h e  4-stage turbine.  

Caution should be used when i n t e r p r e t i n g  t h i s  

A comparison of t h e  r a d i a l  ex i t  s w i r l  angle  p r o f i l e s  f o r  t h e  two config- 
The p l o t  graphica l ly  shows t h e  reduction i n  ura t ions  are shown i n  Figure 34. 

swirl achieved by the  o u t l e t  tu rn ing  vanes which turned t h e  flow from posi- 
t i v e  30 degrees a t  the  i n l e t  p i t c h l i n e  t o  minus one degree a t  t h e  e x i t  
p i t ch l ine .  These curves were drawn by averaging t h e  r a d i a l  s w i r l  traverses 
made a t  three c i rcumferent ia l  pos i t i ons  f o r  t h e  major design po in t  of each 
configuration. 

The design poin t  r a d i a l  t o t a l - to - to t a l  e f f i c i ency  p r o f i l e  shown i n  
Figure 35 f o r  t h e  4-1/2-stage turb ine  w a s  constructed by mass weighting t h e  
c i rcumferent ia l  t r ave r ses  of t o t a l  p ressure  and t o t a l  temperature a t  seven 
r a d i a l  pos i t ions .  

The high e f f i c i ency  a t  t h e  p i t c h l i n e  is  a measure of t h e  f u l l  p o t e n t i a l  
of t he  turbine.  
steep decrease toward t h e  hub are ind ica t ions  of t h e  e f f e c t s  of s t rong  secon- 
dary flow f i e l d s  generated by t h e  high turning bladerows. 
ments i n  the  hub and t i p  regions are needed t o  enable t h e  bladerows t o  f u l l y  
u t i l i z e  t h e i r  po ten t i a l .  

The gradual f a l l -o f f  i n  e f f i c i ency  toward t h e  t i p  and t h e  

Additional improve- 

Reynolds Number Ef fec t s  - The tu rb ine  Reynolds number was var ied  f o r  t he  
4-1/2-stage turb ine  by operating over a range of i n l e t  pressures (thus changing 
the density l eve l )  while maintaining a constant t u rb ine  pressure  r a t i o .  
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I n  Figure 36 ,  a p l o t  of to ta l - to- to ta l  e f f i c i ency  versus  blade-jet  speed 
r a t i o  a t  constant  t o t a l - to - s t a t i c  pressure r a t i o  and with l i n e s  of constant  
i n l e t  pressure is  presented. The p l o t  i l l u s t r a t e s  t h e  e f f e c t s  of varying i n l e t  
pressure on turb ine  e f f i c i ency  as t h e  turb ine  opera tes  through its speed range. 
The increase  i n  e f f i c i ency  becomes smaller wi th  each increase  i n  turb ine  i n l e t  
pressure (and corresponding increase  i n  turb ine  Reynolds number) u n t i l  a t  some 
poin t ,  no f u r t h e r  e f f i c i ency  increase w i l l  r e s u l t .  
i n l e t  pressure a t  which no e f f i c i ency  inc rease  occurs w a s  a t t a i n e d  i n  t h i s  
test. 

The curves show t h a t  t h e  

Radial  e f f i c i ency  p r o f i l e s  based on f ixed  rake  da ta  f o r  two i n l e t  pres- 
sures  are presented i n  Figure 37. 
t o t a l  pressures  of 45 p s i  and 25 p s i ,  corresponding t o  high and low Reynolds 
numbers, respect ively.  Figure 38 i l l u s t r a t e s  t h e  change i n  e f f i c i ency  between 
the low and high Reynolds number poin ts .  This f i g u r e  ind ica t e s  t h a t  t h e  
g rea t e s t  change i n  e f f i c i ency  due t o  Reynolds number e f f e c t s  occurs i n  t h e  hub 
region. 

The p r o f i l e s  w e r e  constructed f o r  i n l e t  

P l o t s  of to ta l - to- to ta l  e f f i c i ency  and equivalent  weight flow versus 
turbine Reynolds number appear i n  Figures 39 and 40. 
represents  da ta  obtained a t  o r  near t h e  design operat ing poin t .  
e f f ic iency  and equivalent  weight flow increase  with increase  i n  Reynolds number” 
up t o  a poin t  where Reynolds number i s  approximately one mil l ion.  
value, e f f i c i ency  and equivalent  weight flow level off  a t  a constant  value. 

Each po in t  on the  p l o t s  
Both turb ine  

Above t h i s  

Outlet  Turning Vane Performance - Figure 41 depic t s  t h e  t o t a l  p i t c h l i n e  

This curve i l l u s t r a t e s  t h a t  t he  o u t l e t  turning vanes w e r e  highly 
turning done by t h e  o u t l e t  turning vanes a t  t h e  design and off-design operat ing 
points .  
successful  i n  being a b l e  t o  tu rn  t h e  tu rb ine  exi t  flow t o  axial a t  a l l  of t h e  
operat ing condi t ions invest igated.  

Figures 4 2  and 4 3  show the r e s u l t s  of two independent methods used t o  
determine the  percent  tu rb ine  performance l o s s  a t t r i b u t e d  t o  t h e  o u t l e t  
turning vanes. 
i n  e f f ic iency  between t h e  4- and 4-1/2-stage configurat ions a t  a given 
equivalent s p e c i f i c  work ex t rac t ion .  
t o t a l  pressure and i t  ind ica t e s  approximately 0.08 percent  add i t iona l  loss 
i n  o v e r a l l  e f f i c i ency  a t  the  turb ine  design point .  Figure 43, however, w a s  
based on measured exi t  total-pressure and i t  shows the 4-112-stage design 
poin t  e f f ic iency  t o  be approximately 0.5 percent  below the  4-stage turbine.  
This level of l o s s  appears t o  be  more realist ic when compared with compressor 
o u t l e t  guide vane performance. 

It is  assumed t h a t  t h i s  loss i s  r e f l ec t ed  by t h e  d i f fe rence  

Figure 42 was based on calculated exi t  

Recommended Improvements - The ana lys i s  of t h e  da ta  acquired during t h e  
air turb ine  t e s t i n g  of t he  4- and 4-1/2-stage configurat ions i n d i c a t e  s p e c i f i c  
areas of performance de f i c i enc ie s  i n  t h e  4-1/2-stage very highly loaded f a n  
turbine.  Several  recommendations t o  improve t h e  o v e r a l l  design and off  design 
performance based on these  test r e s u l t s  are out l ined  below: 

0 U t i l i z e  leaned s t a t o r s  as reported i n  Reference 2. 
decrease t h e  ro to r  hub i n l e t  relative Mach numbers below t h e i r  
cur ren t  levels which are approximately 0.7. 

This w i l l  

Leaned s t a t o r s  w i l l  
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a lso  decrease the  leakage l o s s  across the  ro to r  t i p  shrouds by 
decreasing the  axial static pressure drop across  the  blade t i p  
sect ion.  

0 U s e  tandem s t a t o r  a i r f o i l s  i n  s tages  2, 3 and 4. Reference 3 indi-  
ca t e s  t he  performance of a highly loaded two-stage turb ine  w a s  
increased 1.2 percent by i n s t a l l i n g  a tandem s t a t o r  i n  s t age  two. 
Tandem a i r f o i l s  a l s o  increase  the performance i n  t h e  turb ine  hub 
region. 

Redesign the  o u t l e t  turning vane and remove t h e  design criteria t h a t  
t h e  d i f fus ion  f a c t o r  equal 0.4. 
design of t h e  o u t l e t  turning vane indicated higher performance could 
be achieved with d i f fus ion  f a c t o r s  higher than 0.4. 

0 

Parametric s tud ie s  preceding the  

The design point  measured r a d i a l  e f f ic iency  p r o f i l e  ind ica tes  a s i g n i f i -  
cant loss i n  performance i n  t h e  hub region of t h e  turbine.  
t h a t  t h i s  is t he  manifestation of t he  s t rong secondary flow f i e l d s  generated 
by the  high turning blade rows. 
highly des i r ab le  t o  test add i t iona l  configurat ions t o  i s o l a t e  t he  performance 
of the individual  s t ages  and t o  determine the  nature of t he  low performance 
i n  the hub region. 

It is  suspected 

In  view of t h e  experimental r e s u l t s  i t  i s  
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MECHANICAL EVALUATION 

The ro to r  blades were v i b r a t i o n  t e s t ed  under laboratory conditions t o  
e s t a b l i s h  t h e i r  fundamental and higher frequency modes. 
conducted t o  e s t a b l i s h  t h e  endurance capab i l i t y  of t he  blades while operating 
i n  an air  turb ine  environment. These tests subs tan t ia ted  t h e  a n a l y t i c a l  
e f f o r t  reported i n  Reference 1. 

Fatigue tests w e r e  

LABORATORY TEST OF ROTOR BLADE AIRFOILS 

Vibration Testing - A series of v i b r a t i o n  tests were conducted t o  sub- 
s t a n t i a t e  t he  predicted n a t u r a l  frequencies reported i n  Reference 1. 
fundamental and higher frequency modes of v i b r a t i o n  w e r e  determined f o r  
fixed- f ixed  ( r e s t r a ined  a t  t h e  hub and t i p )  end conditions.  

The 

The top tangs on t h e  shrouds were machined off and a steel block w a s  
brazed t o  t h e  top of t h e  shrouds t o  allow f o r  a t i g h t  clamping surface.  The 
clamping w a s  done across  t h e  pressure  and suc t ion  s i d e s  of t h e  blade's shroud 
region to  simulate t h e  "locking up" of t h e  b lade ' s  shroud during air  turb ine  
operation. 
response, the actual end condition imposed on t h e  blades w a s  a f ixed  end con- 
d i t i on .  
a c t u a l  turbine,  t he  blades w i l l  lock  up i n  t h e  t angen t i a l  d i r e c t i o n  and should 
be f r e e  to  move i n  t h e  a x i a l  direct ion.  
t he  t angen t i a l  d i r e c t i o n  a t  t h e  shroud, and then allow an axial displacement 
to  occur, i s  not f e a s i b l e  i n  a laboratory setup. This is due to  t h e  m a s s  of 
the clamping se tup  and t h e  l a c k  of knowledge t o  t h e  degree of displacement 
necessary to  simulate a c t u a l  tu rb ine  operation. The predicted blade ana lys i s  
w a s  done f o r  each blade under fixed-fixed end conditions f o r  comparison t o  the  
experimental r e s u l t s  and is  presented i n  Table 111. 

Due t o  t h e  t i g h t  clamping necessary t o  g e t  a good frequency 

The dovetail-shank region w a s  clamped i n  t h e  same manner. I n  t h e  

To g e t  a r i g i d  clamp of t h e  blade i n  

Campbell Diagrams incorporating t h e  most probable modes of v ib ra t ion  are 
presented i n  Figures 44 through 47 .  
r e s u l t s  and experimental data f o r  t h e  fixed-fixed end conditions provides t h e  
necessary c r e d i b i l i t y  t o  t h e  predicted axial modes. 

The c l o s e  agreement between t h e  t h e o r e t i c a l  

Based on the  t h e o r e t i c a l  ana lys i s  and t h e  experimental r e s u l t s  i t  w a s  
concluded t h a t  t h e  blades would not experience any excessive v ib ra t ions  during 
air  turb ine  operation. 

Fatigue Endurance Testing - Fatigue endurance t e s t i n g  w a s  performed on 
test specimens from each blade row. The top por t ions  of t h e  blades w e r e  c u t  
off which increased the  f i r s t  f l e x  frequency response and shortened t h e  f a t i g u e  
t e s t i n g  t i m e .  The blades w e r e  clamped a t  t h e  dove ta i l  and fa t igued  i n  f i r s t  
f l e x  t o  g e t  an ind ica t ion  of t h e  blade material endurance s t r eng th  a t  an "A" 
r a t i o  (oa/om) of i n f i n i t y .  These stresses are shown on t h e  Goodman diagram 
i n  Figure 48. The stress l e v e l s  experienced by the  test specimens were measured 
by s t r a i n  gages loca ted  i n  t h e  most l i k e l y  regions of f a i l u r e .  
used s ince  i t  i s  usually the  easiest t o  instrument. 

F i r s t  f l e x  w a s  
Runout f o r  a p a r t i c u l a r  
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stress l e v e l  was set a t  a mi l l ion  cyc les  before i t  w a s  increased i n  increments 
of 10 KSIDA.  
the 410 s t a i n l e s s  steel, a mi l l i on  cyc les  to  f a i l u r e  would adequately ind ica t e  
the l e v e l  of the endurance s t rength .  
i n  the t r a i l i n g  edge a t  2.5% span. 
than average proper t ies ,  
caused a stress concentration i n  t h a t  region. 
i n  the t r a i l i n g  edge region a t  t h e  stress level depicted on Figure 48. 
three f a i l e d  on the  leading edge above t h e  r o o t  f i l l e t .  Photographs of 
the blade f a i l u r e s  are shown i n  Figure 49. 
f a i l u r e  a t  d i f f e r e n t  po in ts  i f  they had been r e s t r a ined  a t  the  t i p ,  due 
t o  a d i f f e r e n t  s t r a i n  d i s t r ibu t ion .  It i s n ' t  t he  f a i l u r e  loca t ion  t h a t  
is important i n  t h i s  p a r t i c u l a r  test, b u t  the  level of stress a t  f a i l u r e .  
The las t  three  s tages  exhibi ted an  endurance level above the  curve on t h e  
Goodman Diagram. This curve i s  based on 107 cyc les  t o  f a i l u r e  and s ince  a 
mi l l ion  cyc les  were used as a l i m i t  before  increasing t h e  stress, the  test 
values would be  above the  curve. 

Considering t e s t i n g  t i m e  and the  cyc l i c  endurance s t r eng th  of 

The s t age  one blade f a i l e d  a t  80 KSIDA 
This is approximately 20 KSIDA less 

The reason w a s  due t o  a sharp t r a i l i n g  edge which 
Stages two and four  f a i l e d  

Stage 

The blades would have experienced 

Table I V  i l l u s t r a t e s  t he  number of cycles  run  a t  the  f a i l u r e  stress. 
Stage one, two and th ree  were s t a r t e d  a t  50 KSIDA with 10 KSIDA incremental 
increases  a f t e r  lo6  cyc les  u n t i l  f a i l u r e .  
with incremental increases  u n t i l  f a i l u r e .  

Stage four  w a s  s t a r t e d  a t  70 KSIDA 

The laboratory f a t i g u e  da ta  compared favorably with the  average f a t i g u e  
c h a r a c t e r i s t i c s  f o r  t he  410 stainless steel. The material i n  a machined 
blade configurat ion suffered l i t t l e  o r  no f a t i g u e  s t r eng th  de t e r io ra t ion  r e l a t i v e  
to  the polished barstock specimens es tab l i shed  as the  norm. It w a s  concluded 
tha t  the ro to r  blades had no inherent ly  weak po in t s  and had s u f f i c i e n t  f a t igue  
endurance capab i l i t y  f o r  successful  a i r  turbine operation. 
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SUMMARY OF RESULTS 

A four and one-half s t age  turb ine  w a s  t e s t ed  i n  order t o  evaluate the  
performance of a very highly loaded f an  turb ine  wi th  o u t l e t  turning vanes. 
The most s i g n i f i c a n t  r e s u l t s  of t h e  t e s t i n g  and ana lys i s  are summarized below: 

1. The fou r  and one-half s t a g e  turb ine  achieved to t a l - to - to t a l  tu rb ine  
e f f i c i ency  of 0.853 a t  the  design speed and pressure r a t i o  
( N / K  = 2171.2, P T ~ / P T ~ =  2.66). c r  

2. The four s t a g e  configuration w a s  t e s t e d  t o  i s o l a t e  t h e  performance 
of the o u t l e t  turning vanes. The test r e s u l t s  based on measured 
turb ine  exhaust t o t a l  p ressures  ind ica ted  a 0.5 percent loss i n  four 
and one-half s t age  tu rb ine  e f f i c i ency  can be a t t r i b u t e d  t o  the  o u t l e t  
turning vane performance. However, a d i f fe rence  of only 0.08 percent 
loss i n  performance w a s  ind ica ted  when based on ca lcu la ted  exhaust 
t o t a l  pressure. 

3. The o u t l e t  turning vanes w e r e  successfu l  i n  tu rn ing  the  turb ine  exit 
flow to  a x i a l  a t  a l l  of t h e  operating conditons inves t iga ted .  

High e f f i c i e n c i e s  i n  t h e  p i t c h l i n e  region w e r e  ind ica ted  by t h e  r a d i a l  
e f f i c i ency  p r o f i l e s .  
and t i p  with the  e f f e c t  more pronounced i n  the  hub region. 

4 .  
Efficiency drops were noticed toward the  hub 

5. Reynolds number t e s t i n g  showed t h a t  t o t a l - to - to t a l  e f f i c i ency  and 
equivalent weight flow decrease with decreasing Reynolds number. 
Radial e f f i c i ency  p r o f i l e s  ind ica ted  t h e  g r e a t e s t  increase  i n  l o s s  
with reduced Reynolds number occurs i n  t h e  hub region. 
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APPENDIX A 

OVERALL PERFORMANCE CALCULATION 

Exit  Flow Angle - I n  order t o  evaluate turb ine  performance on t h e  b a s i s  of 
turbine e x i t  totak pressure ca lcu la ted  from cont inui ty ,  an  average tu rb ine  
e x i t  flow angle, I’, was determined. 
deviation from axial d i r ec t ion ,  i r r e s p e c t i v e  of sign. 
was divided i n t o  streamtubes, and measured values of s w i r l  angles,  t o t a l  pres- 
sure,  and t o t a l  temperature were used t o  s a t i s f y  cont inui ty  wi th in  each stream- 
tube. 
from hub t o  t i p .  
proceeded as follows: 

This angle i s  t h e  absolu te  va lue  of t h e  
The turb ine  exit flowpath 

The turb ine  exi t  measured static pressure w a s  assumed t o  vary l i n e a r l y  
The determination of t h e  average turb ine  exit flow angle  

m 

FT = Measured t o t a l  p ressure  a t  center  of i - t h  streamtube. 

Ps = Static pressure a t  center  of i - th  streamtube based on 
linear v a r i a t i o n  i n  measured s ta t ic  pressure from hub 
t o  t i p  

TT = Measured t o t a l  temperature at  cen te r  of 1-th streamtube 

r = Swirl angle 

p = Density 

V = Absolute ve loc i ty  

A - Area 

m = Number of streamtubes 

i = Subscript denoting streamtube value 

ann = Subscript  denoting value f o r  t o t a l  annulus 

avg = Subscript denoting average value f o r  t o t a l  annulus 

The average ve loc i ty  representing the  turb ine  e x i t  flow f i e l d  w a s  calcu- 
l a t e d  by conserving t h e  a x i a l  and t angen t i a l  components of momentum, such t h a t  
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U 
where V 

v z avg =(, i=l G wi vi COS r i)/ i=l W i  

'i and 

= 

= 

Tangential component of absolute  ve loc i ty  

Axial component of absolu te  ve loc i ty  

U 
V 

vz 
= Weight flow through i - th  streamtube 

'i 

The average turbine exit t o t a l  temperature w a s  determined through an 
energy balance of the  annular streamtubes. 

The average densi ty  a t  t h e  turbine e x i t  w a s  obtainsd from the  equation 
of state. 

where 
2 

= TT - 'avg 
avg 2g Jc 

P avg 
TS 
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Calculated Outlet  Total  Pressure  - After obtaining the average turb ine  
e x i t  flow angle,  the e x i t  t o t a l  p ressure  was ca lcu la ted  i n  t h e  following 
manner : 

Y/Y-1 - P (l+yMi) 
pT3 s3 

Turbine exit Mach number, M3, was determined from t h e  following re la t ionship :  

- 2 --3 

Turbine e x i t  t o t a l  temperature, , was determined as follows: 
TT3 Ah 

O P  

w -  

TTg TT c 

2w NT Ah - 60 JW where 

N - Turbine r o t a t i v e  epeed 

T * Measured torque 

T T ~  - Measured turb ine  inlet t o t a l  temperature 

W = Measured turb ine  weight flow 

I n l e t  To ta l  Pressure - Turbine i n l e t  t o t a l  p ressure  was ca lcu la ted  i n  the 
same manner as t h e  tu rb ine  e x i t  t o t a l  pressure. The ca lcu la t ion  used measured 
airflow, measured i n l e t  t o t a l  temperature, t h e  average of measured hub and t i p  
s ta t ic  pressures,  and t h e  assumption of zero inlet s w i r l  angle. 

Performance Parameters - The remaining parameters used i n  t h e  o v e r a l l  
performance ca l cu la t ion  were obtained as follows: 

6 - P 114.696 
T1 

Ocr - TT 1518.688 
0 

& = 1.0 (for  y = 1.4) 

Equivalent Speed, N EQV = N/J;e'5- cr 
Equivalent Weight Flow, WA EQV = W F  €16 cr 
Weight Flow-Speed Parameter, WAN EQV = WN~/606 
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Equivalent Torque, TQ EQV = T E / ~  

Equivalent Specific Work, DH EQV = - = Ah 2n NT 
'cr 60 J gcr 

Ideal Equivalent Specific Work, DHI EQV = 

Total-to-total Efficiency, ETA TT = 

Blade-Jet Speed Ratio, U/CO = 

v =  
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APPENDIX B 

REYNOLDS NUMBER CALCULATION 

The turb ine  Reynolds numbers were based on the  energy weighted Reynolds 
numbers of each blade row as defined below: 

) /; Ahi 5-4 = (; i=1 i=l 

- 

where 

and Ahi = Equivalent f r a c t i o n a l  energy ex t r ac t ion  of i - th  bladerow. 

The v i s c o s i t i e s  u were obtained from Reference 5. 
The equivalent  f r a c t i o n a l  energy ex t r ac t ion  of each bladerow i s  derived 

as follows. 
two cons t i tuents  associated with the  s t a t o r  and r o t o r  leaving energies .  
This d iv is ion  of t he  t o t a l  s t age  energy is  i l l u s t r a t e d  on the  following 
en th  a1 py-en t ropy diagram : 

The ve loc i ty  diagram energy f o r  each s t age  can be divided i n t o  

1 

Entropy 
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The energies Ah1 and Ah2 can b e  expressed i n  terms of t h e  s t age  ve loc i ty  
diagram parameters as shown below: 

From t h e  sketches,  

2 (u v s i n  a1 + U ~ R ~  s i n  fi2 - u2 I Ahstg' gJ 1 1 

With the  appropriate  combination of terms and a lgeb ra i c  manipulations 
t h e  above expressions can b e  simply expressed as: 

2 2 

2gJ 
u1 - u2 Ahstg= Ahl + Ah2 + 

where 

and 

- -  
2gJ 

Ah2 - 

s i n a l  - 3 )  
v1 

(2)  ( 2  s i n  B 2  - ?) 
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are the  energy equivalents  of ve loc i ty  leaving V 1 2  R22 
2gJ and - 2gJ The terms - 

the s t a t o r  and ro to r  respect ively.  

~ The terms [$)(2 s i n  u1 - and [(") ( 2  s i n  B 2  -")I 
v1 R2 R2 

are  proper t ies  of the  ve loc i ty  diagrams a t  the s t a t o r  and ro to r  e x i t  planes. . 

The ve loc i ty  diagram parameters used i n  t h i s  ana lys i s  f o r  each b lade  row 
were calculated using the Turbine Computer Program described i n  Reference 6. 
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APPENDIX C 

LIST OF SYMBOLS 

A 

C 
P 

D 

Ah 

Ahstg 

h 

R 

M 

m 

N 

n 

pS 

s3 

pT 

pT1 

pT3 

P 

R 

R 
2 

RN 
RN 
TS 

TT 

TTO 

- 
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2 2  Area ( in ,  , cm ) 

Specif i c  heat  a t  
2 2 

constatnt  pressure ( f t  /sec2 O R ,  m /sec2 OK) 

Diameter ( in , ,  em) 

Throat dimension (in., cm) 

Turbine energy ex t r ac t  i on  (B t u/lbm , j oules  /kg } 

Stage energy ex t rac t ion  (Btu/lbm, joules/kg)  

Height a t  bladerow throa t  (in., cm) 

Blade or vane suct ion sur face  length ( in .*  cm) 

Mach number 

Number of bladerows, streamtubes, or  s tages  

Rotational speed (rev/rnin) 

Number of vanes o r  blades 

S t a t i c  pressure (psia,  newtons/cm } 

Turbine e x i t  s t a t i c  pressure (psia,  newtons/cm ) 

Total pressure ( p s i a ,  newtons/cm ) 

Turbine i n l e t  t o t a l  pressure,  s t a t i o n  1 (psia ,  newtons/cm ) 

Turbine e x i t  t o t a l  pressure,  s t a t i o n  2 (ps ia ,  newtons/cm ) 

2 

2 

2 

2 

2 

2 2 Gas constant ( f t  /sec2 OR, m /sec2 OK) 

Rotor e x i t  r e l a t i v e  gas  ve loc i ty  ( f t / s ec ,  m/sec) 

Reynolds number 

Energy weighted o v e r a l l  Reyno Ids  number 

S t a t i c  temperature (OR, OK) 

Total  temperature ( O R ,  OK) 

Turbine inlet t o t a l  temperature, s t a t i o n  0 and s t a t i o n  1 
(OR, OK) 



TT3 

t 

U 

v 

W 

cr Ah/B 

w 6 -  € / 6  cr 

%+- c r  

WN~/606 

gJAh/2U2 

" 
0 

"1 

B1 

B2 

r 

Y 

6 

€ 

"T 

e c r  

Turbine e x i t  t o t a l  temperature, s t a t i o n  2 ( O R ,  OK) 

Spacing ( in .  > cm) 

Wheel speed (ft/sec, m/sec) 

Absolute ve loc i ty  ( f t / sec ,  m/sec) 

Mass flow rate (lbm/sec, kg/sec) 

Equivalent s p e c i f i c  work (Btu/lbm, j oules  /kg) 

Equivalent weight flow (lbm/sec, kg/sec) 

Equvalent r o t a t i v e  speed (rev/min) 

Weight flow - speed parameter (lbm/sec2, kg/sec ) 

Loading f a c t  o r  

Vane i n l e t  absolute  flow angle (degrees) 

Vane e x i t  absolute  flow angle  (degrees) 

Blade i n l e t  relative flow angle (degrees) 

2 

Blade e x i t  relative flow angle  (degrees) 

Stage leaving s w i r l  angle  (degrees) 

Turbine out  flow angle  (defined i n  Appendix A) 

Spec i f ic  heat  r a t i o  

Ratio of tu rb ine  pressure t o  pressure a t  standard sea level 
condi t ions 

Function of y defined as 

Total-to-total  e f f ic iency  

Squared r a t i o  of c r i t i ca l  ve loc i ty  a t  tu rb ine  i n l e t  temperature 
to  c r i t i ca l  ve loc i ty  a t  standard sea level temperature 

Viscosity (lbm/sec-ft, kg/sec-m) 

Blade-jet speed r a t i o  

Density ( in .?  cm) 
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0 a 

m (5 

7 

2 Alternating stress (ksi, newtons/cm ) 

Mean stress (ksi, newtons/cm ) 

Torque (f t-lbf m-newtons) 

Equivalent torque, T = T E / ~  (ft-lbf, m-newtons) 

2 

eq 

Subscripts 

a Alternating 

B Relative to rotor blade 

h Hub 

i Current axial station, stages or streamtube, or ideal 

m Mean 

P Pitch 

R Relative 

Radial component 

Tip 

Tangential component 

z Axial component 
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Figure  1.  Turbine Design V e l o c i t y  Diagrams. 
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F i g u r e  4. S t a g e  One Rotor Assembled. 

F i g u r e  5. S t a g e  Two Rotor  Assembled. 
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Figure 6.  S tage  Three Rotor Assembled, 

F igure  7. S tage  Four Rotor Assembled. 
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Figure  11. S tage  Four S t a t o r .  Figure 10. Stage  Three S t a t o r .  
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F i g u r e  12. O u t l e t  T u r n i n g  Vane. 
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Figure 13. Stage One Rotor. Figure  14. Stage Two Rotor. 

46 



Figure 15 .  Stage Three Rotor. Figure 16. Stage Four Rotor. 
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Figure 17 .  Typica l  General E l e c t r i c ,  Evendale,  A i r  Turbine T e s t  F a c i l i t y  
Conf igurat ion.  
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Equivalent  Weight Flow, Kg/Sec 
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Equivalent Spec i f i c  Work, JouleslKg 
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Blade-Jet Speed Ratio 

Figure 23. Total-to-Total E f f i c i e n c y  Vs. Blade - Jet Speed Ratio. 
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F i g u r e  24. Total-to-Total E f f i c i e n c y  V s .  
Total-to-Total P r e s s u r e  Ratio. 
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Equivalent Weight Flow, Kg/Sec 
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Equivalent Specific Work, JoulesBg 

k: 
2 
L 

0 
.d 
c, 
Ld !x 
a, 

m m 
a, 
k 
c4 
rl 
Ld 
c, 
0 
E-r 

c, 
I 
rl 
cd 
c, 
0 
l3 

5 

b 

(0 hl 
rn m 

60 



90 

88 

86 

84 

82 

80 

78 

76 

74 
0.10 0.12 0.14 0.16 0.18 0.20 

Blade-Jet Speed Ratio 

Figure  29. P r e d i c t e d  and Actual Total - to-Total  E f f i c i e n c y  Vs. 
Blade - Jet Speed Ratio, a t  Des ign  Speed. 
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Figure 30. Normalized S t a t i c  Pressure  V s .  Axial S t a t i o n ,  a t  
Des ign Speed. 
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Figure 30. Normalized Static Pressure Vs. Axial Station, at 
Design Speed (Continued). 
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Axial Station 

Figure  30. Normalized S t a t i c  Pressure  V s .  Ax ia l  S t a t i o n ,  a t  
Des ign Speed (Continued).  
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Figure  30. Normalized S t a t i c  Pressure  V s .  A x i a l  S t a t i o n ,  a t  
Des ign Speed (Continued).  
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Figure 30. Normalized Static Pressure Vs. Axial Station, at 
Design Speed (Continued). 
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Figure 30. Normalized S t a t i c  Pressure Vs. Axial  S t a t ion ,  a t  
Design Speed (Continued). 
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Figure 30. Normalized S t a t i c  Pressure  V s ,  A x i a l  S t a t i o n ,  a t  
Des ign Speed (Continued).  
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F i g u r e  30. Normal ized  S t a t i c  P r e s s u r e  Vs. Axial S t a t i o n ,  a t  
Des ign  Speed (Concluded) .  
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Figure  31. Turbine E f f i c i e n c y  Contour P l o t ,  4-1/2-Stage. 
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Figure 35. Radial  Total-to-Total E f f i c i e n c y  P r o f i l e  for 4-1/2-Stage 
Configurat ion.  
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Figure 41. O u t l e t  Turning Vane Turning Angle V s .  O u t l e t  Turning Vane 
I n l e t  Angle a t  the  P i t c h l i n e .  
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Figure 44. Most Probable Modes of Vibration, Stage One Blade. 
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Figure  45. Most Probable Modes of Vibration, S t a g e  Two Blade .  
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Figure 47. Most Probable Modes of Vibrat ion ,  Stage Four Blade .  
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